Objective
Seismic tomography images of the Earth's interior are key to the characterisation of earthquakes, natural resource exploration, seismic risk assessment, tsunami warning, and studies of geodynamic processes. While tomography has drawn a fascinating picture of our planet, today's individual researchers can exploit only a fraction of the rapidly expanding seismic data volume. Applications relying on tomographic images lag behind their potential; fundamental questions remain unanswered: Do mantle plumes exist in the deep Earth? What are the properties of active faults, and how do they affect earthquake ground motion?
To address these questions and to ensure continued progress of seismic tomography in the 'Big Data' era, I propose new technological developments that enable a paradigm shift in Earth model construction towards a Collaborative Seismic Earth Model (CSEM). Fully accounting for the physics of wave propagation in the complex 3D Earth, the CSEM is envisioned to evolve successively through a systematic group effort of my team, thus going beyond the tomographic models that individual researchers may construct today.
I will develop the technological foundation of the CSEM and integrate these developments in studies of large-earthquake rupture processes and the convective pattern of the Earth's mantle in relation to surface geology. The CSEM project will bridge the gap between regional and global tomography, and deliver the first multiscale model of the Earth where crust and mantle are jointly resolved. The CSEM will lead to a dramatic increase in the exploitable seismic data volume, and set new standards for the construction and reproducibility of tomographic Earth models.
Beyond this project, the CSEM will be openly accessible through the European Plate Observing System (EPOS). It will then offer Earth scientists the unique opportunity to join forces in the discovery of multiscale Earth structure by systematically building on each other's results.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences data science big data
- natural sciences physical sciences astronomy planetary sciences planets
- natural sciences earth and related environmental sciences geology seismology
- social sciences sociology governance crisis management seismic risk management
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
8092 Zuerich
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.