Objective
Rapid object identification is crucial for survival of all organisms, but poses daunting challenges if many stimuli compete for attention, and multiple sensory and motor systems are involved in the processing, programming and generating of an eye-head gaze-orienting response to a selected goal. How do normal and sensory-impaired brains decide which signals to integrate (“goal”), or suppress (“distracter”)?
Audiovisual (AV) integration only helps for spatially and temporally aligned stimuli. However, sensory inputs differ markedly in their reliability, reference frames, and processing delays, yielding considerable spatial-temporal uncertainty to the brain. Vision and audition utilize coordinates that misalign whenever eyes and head move. Meanwhile, their sensory acuities vary across space and time in essentially different ways. As a result, assessing AV alignment poses major computational problems, which so far have only been studied for the simplest stimulus-response conditions.
My groundbreaking approaches will tackle these problems on different levels, by applying dynamic eye-head coordination paradigms in complex environments, while systematically manipulating visual-vestibular-auditory context and uncertainty. I parametrically vary AV goal/distracter statistics, stimulus motion, and active vs. passive-evoked body movements. We perform advanced psychophysics to healthy subjects, and to patients with well-defined sensory disorders. We probe sensorimotor strategies of normal and impaired systems, by quantifying their acquisition of priors about the (changing) environment, and use of feedback about active or passive-induced self-motion of eyes and head.
I challenge current eye-head control models by incorporating top-down adaptive processes and eye-head motor feedback in realistic cortical-midbrain networks. Our modeling will be critically tested on an autonomously learning humanoid robot, equipped with binocular foveal vision and human-like audition.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics autonomous robots
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-AdG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
6525 XZ Nijmegen
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.