Objective
AQUARIUS proposes disruptive improvements in laser based water sensing employing MIR quantum cascade lasers (QCLs). It is motivated by
i) the EC Water Framework Directive (2000/60/EC) where hydrocarbons are identified as priority hazardous substances,
ii) the industrial and regulatory need for fast and continuous detection of contaminants and
iii) the current state-of-the-art of measuring these substances using QCLs as defined by project partner QuantaRed Technologies and described in ASTM D7678.
AQUARIUS will improve this offline method by developing pervasive online and inline sensing strategies based on advanced photonic structures. For improved specificity a broadly (200 cm-1) tunable MOEMS based µEC-QCL source will be developed into a core spectrometer. High power, mode-hop free operation and unprecedentedly fast data acquisition (1000 spectra/s) will assure high S/N-ratios and thus high sensitivity. The system for online sensing (LOD: 1ppm) is based on automated liquid-liquid extraction and will be validated by project partner OMV for process and waste water monitoring. It will also be tested for identifying different sources of contaminations by project partner KWR in their water treatment and purification facilities. The system for inline sensing will be based on integrated optical circuits (IOC) including waveguides for evanescent wave sensing. Switching between individual waveguides of the IOC will enable quasi-simultaneous sample and background measurement and thus assure excellent long-term stability. By enrichment of analytes in polymer layers LODs as required for drinking (0.5ppb) and groundwater (50ppb) will be reached.
AQUARIUS covers the supply chain from research institutes to system integrator and end users. It will push the online system from TRL 3 to 7 and the inline system from TRL 2 to 4 and thus reinforce the industrial leadership of the project partners regarding QCL based liquid sensing and photonic components (source, detector and IOCs).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology environmental engineering water treatment processes drinking water treatment processes
- engineering and technology environmental engineering water treatment processes wastewater treatment processes
- engineering and technology chemical engineering separation technologies desalination reverse osmosis
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-ICT-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
9500 VILLACH
Austria
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.