Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Living in the diffusive boundary layer of seaweeds a potential refuge habitat from ocean acidification

Objective

The world’s oceans are becoming more acidic due to the sustained absorption of excess atmospheric CO2. Ocean acidification (OA) is predicted to affect the physiology of marine organisms at a specific level with calcifying species being particularly threatened because low pH impairs the formation, and causes dissolution, of their calcite skeletons. In temperate coastal communities, seaweeds are ecosystem engineers that modify their local chemical (e.g. pH) and physical (e.g. water flow) environment; this modification might offset the negative effects of OA on calcifiers. Brown seaweeds (Order Fucales) are ecologically dominant primary producers of temperate coastal seas, supplying food and habitat for calcifying fauna living on their blade surface (e.g. bryozoans, tube worms) but also forming dense canopies sheltering understory calcareous algae. At the surface of all seaweeds, there is a thin (mm) layer of seawater called the “diffusive boundary layer” (DBL) whose chemistry, including pH, is controlled by the seaweed’s metabolism. Depending on algal morphology, the DBL thickness varies, forming a sometimes thick (6 cm) DBL associated with the seaweed canopy, thus providing more or less complex microhabitats for associated species. The proposed program will combine field observations with rigorous laboratory experiments to examine the ability of morphologically distinct seaweeds to engineer their hydrodynamic and pH environment, and determine the resultant effects on the growth and physiology of associated invertebrates and calcifying algae. To know species interactions under environmental change is important to understand community functioning in a future ocean. This innovative project will compare the generality of responses by conducting experiments using the same novel methods in Fuclean communities from the southern (Tasmania) and northern (Germany) hemispheres, thereby elucidating the extent to which seaweed-based ecosystems can provide natural refugia from OA.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2015

See all projects funded under this call

Coordinator

HELMHOLTZ-ZENTRUM FUR OZEANFORSCHUNG KIEL (GEOMAR)
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 264 110,40
Address
WISCHHOFSTRASSE 1-3
24148 Kiel
Germany

See on map

Region
Schleswig-Holstein Schleswig-Holstein Kiel, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 264 110,40

Partners (1)

My booklet 0 0