Objective
"Computers are now able to recognize people, to tell a dog from a cat, or to process speech so efficiently that they can answer complicated questions. This was still impossible only a decade ago. This progress is largely due to the development of the artificial “deep-learned neural networks”. Nowadays, “deep learning” is revolutionizing our life, prompting an economic battle between internet giants and the creation of a myriad of start-ups. As attractive and performant as it is, however, many agree that deep learning is largely an empirical field that lacks a theoretical understanding of its capacity and limitations. The algorithms used to ""train"" these networks explore a very complex and non-convex energy landscape that eludes most of the present theoretical methodology in machine learning. The behavior of the dynamics in such complicated ""glassy"" landscape is, however, similar to those that have been studied for decades in
the physics of disordered systems such as molecular and spin glasses.
In this project we pursue this analogy and use advanced methods of disordered systems to develop a statistical mechanics approach to deep neural networks. Our first main objective is to create a model for learning features from data via a multi-level neural network. We then regard this model as a kind of a spin glass system amenable to an exact asymptotic analysis via the replica and cavity method. Analyzing its phase diagram and phase transitions shall bring theoretical understanding of the principles behind the empirical success of deep neural networks. This approach will also lead to our second objective: the creation of a new class of fast, efficient, and asymptotically optimal message passing algorithms for deep learning. It is the synergy between the theoretical statistical physics approach and scientific questions from computer
science that makes the project’s objectives feasible and enables a leap forward in our understanding of learning from data.
"
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences internet
- engineering and technology materials engineering
- natural sciences physical sciences classical mechanics statistical mechanics
- natural sciences computer and information sciences artificial intelligence machine learning deep learning
- natural sciences computer and information sciences artificial intelligence computational intelligence
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1015 LAUSANNE
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.