Objective
User interfaces are moving onto the human body. However, today’s rigid and mass-fabricated devices do not conform closely to the body, nor are they customized to fit individual users. This drastically restricts their interactive capabilities.
This project aims to lay the foundations for a new generation of body-worn UIs: interactive skin. Our approach is unique in proposing computational design and rapid manufacturing of stretchable electronics as a means to customize on-body UIs. Our vision is that laypeople design highly personalized interactive skin devices in a software tool and then print them. Interactive skin has the advantage of being very thin, stretchable, of custom geometry, with embedded sensors and output components. This allows it to be used as highly conformal interactive patches on various body locations, for many mobility tasks, leveraging the many degrees of freedom of body interaction.
This vision requires ground-breaking contributions at the intersection of on-body interaction, stretchable electronics, and digital fabrication: 1) We will contribute an automatic method to generate printable electronic layouts for interactive skin from a high-level design specification. 2) We will contribute multimodal interaction primitives that address the unique challenges of skin interaction. 3) We will develop principles for design tools that allow end-users to easily design a personalized interactive skin device. 4) We will use the newly developed methodology to realize and empirically evaluate interactive skin in unsolved application cases.
The project will establish digital fabrication as a strong complement to existing mass-manufacturing of interactive devices. We will contribute to a deep and systematic understanding of the on-body interaction space and show how to build UIs with unprecedented body compatibility and interactive capabilities. We expect that our method will act as a key enabler for the next generation of body-UIs.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences software
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences mathematics pure mathematics geometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
66123 Saarbrucken
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.