Objective
Simulations based on the numerical solution of Partial Differential Equations (PDEs) are nowadays customarily being applied for the design of industrial products and plants, in several branches of the Computer Aided Engineering (CAE), such as thermodynamics, fluid dynamics, structural mechanics. The improvement of the mathematical modeling tools and the availability of computing power have dramatically enhanced the accuracy of computer based simulations, and hence the support they offer to engineering design process. Yet, due to their complexity, in most cases simulations are not fully integrated into the design workflow. Operations as preprocessing, grid generation, setting up and running the simulations, and postprocessing the outputs, require specific skills and are extremely time and resources consuming. For these reasons, design engineers are sometimes resorting to simplified low fidelity models, which are often quantitatively inaccurate. More complex and accurate high fidelity models are only and occasionally considered at the very end of the design cycle, and are usually employed to optimize single components or to provide a final assessment of the overall accuracy of the standard simpler models. In this background, introducing accessible high-fidelity models in a user friendly intermediate environment would represent a strategic asset to facilitate and spread simulation-based design approaches and their benefits for industries in new industrial applications, as already happens for example in automotive or aerospace industry, towards a more efficient resources employment, energy saving and optimized products. The objective of the project is to set up a user friendly high-fidelity simulation platform, based on efficient simulation techniques and standardized automated workflows to be provided as a Simulation-as-a-Service (SaaS) tool, for the design and optimization of industrial furnaces.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences classical mechanics fluid mechanics fluid dynamics
- engineering and technology materials engineering
- natural sciences mathematics pure mathematics mathematical analysis differential equations partial differential equations
- social sciences economics and business economics sustainable economy
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.5. - SOCIETAL CHALLENGES - Climate action, Environment, Resource Efficiency and Raw Materials
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.3.1. - Mainstreaming SME support, especially through a dedicated instrument
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
SME-1 - SME instrument phase 1
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-SMEInst-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20158 Milano
Italy
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.