Objective
Geometric data is prevalent in many areas of science and technology. From the surface of the brain to the intricate shapes of free-form architecture, complex geometric structures arise in many fields, and problems such as analysis, processing and synthesis of geometric data are of great importance.
One major challenge in tackling such problems is choosing an adequate discrete representation of the geometric data. Traditionally, surface geometric data is treated as an irregularly sampled signal in three-dimensional space, yielding a representation as either a point cloud, or a polygonal mesh. Further analysis and manipulation are done directly on this discrete representation, resulting in algorithms which are often combinatorial, leading to difficult numerical optimization problems. The goal of this research is to explore a fundamentally different approach of representing geometric data through the space of scalar functions defined on it, and representing geometric operations as algebraic manipulations of linear operators acting on such functions. We will investigate the basic theory behind such a representation, addressing questions such as: what are the best function spaces to work with? Which operators can be consistently discretized, leading to discrete theorems analogous to continuous ones? How should multi-scale processing of geometric data be treated in this novel representation? To validate our approach, we will explore how this representation can be leveraged for devising efficient solutions to difficult real-world geometry processing problems, such as numerical simulation of intricate phenomena on curved surfaces, surface correspondence and quadrangular remeshing. By shifting the focus from geometry-centric representations and considering instead shapes through the lens of functional operators, we could potentially lay the ground for a fundamental change in the way that geometric data is treated and understood.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences earth and related environmental sciences atmospheric sciences meteorology
- engineering and technology medical engineering diagnostic imaging computed tomography
- medical and health sciences clinical medicine obstetrics
- natural sciences mathematics pure mathematics geometry
- natural sciences earth and related environmental sciences palaeontology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
32000 Haifa
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.