Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Spins for Efficient Photovoltaic Devices based on Organic Molecules

Objective

Organic solar cells (OSCs) have the potential to become an environmental friendly, inexpensive, large area and flexible photovoltaics technology. Their main advantages are low process temperatures, the potential for very low cost due to abundant materials and scalable processing, and the possibility of producing flexible devices on plastic substrates. To improve their commercialization capacity, to compete with established power generation and to complement other renewable energy technologies, the performance of state-of-the-art OSCs needs to be further improved.

Our goals within SEPOMO – Spins in Efficient Photovoltaic devices based on Organic Molecules – are to bring the performance of OSCs forward by taking advantage of the so far unexplored degree of freedom of photogenerated species in organic materials, their spin. This challenging idea provides a unified platform for the excellent research to promote the world-wide position of Europe in the field of organic photovoltaics and electronics, and to train strongly motivated early stage researchers (ESRs) for a career in science and technology oriented industry that is rapidly growing.

Our scientific objectives are to develop several novel routes to enhance the efficiency of OSC by understanding and exploiting the electronic spin interactions. This will allow us to address crucial bottlenecks in state-of-the-art OSCs: we will increase the quantum efficiency by reducing the dominant recombination losses and by enhancing the light harvesting and exciton generation, e.g. by means of internal upconversion of excited states.

Our ESRs will be trained within this interdisciplinary (physics, chemistry, engineering) and intersectoral (academia, R&D center, enterprise) consortium in highly relevant fundamental yet application-oriented research with the potential to commercialise the results. The hard and soft skills learned in our network are central for the ESRs to pursue their individual careers in academics or industry.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-ITN-ETN - European Training Networks

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-ITN-2016

See all projects funded under this call

Coordinator

RIJKSUNIVERSITEIT GRONINGEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 510 748,56
Address
Broerstraat 5
9712CP Groningen
Netherlands

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 510 748,56

Participants (10)

My booklet 0 0