Objective
Our nanotechnology based printing solution is dedicated for use in PV cells and in home electronics (LCD displays). We intend to increase economic attractiveness of the use of the photovoltaics (by its cost reduction), in case of home electronics, energy efficiency will be increased by reduction of energy consumption of displays (by increasing the efficiency of electric energy delivered to the light-emitting layer). It will be possible thanks to our disruptive innovation, that is a new generation of TCF layers for use in displays and thin film photovoltaic cells.
eXtra Transparent Printed Lines (XTPL) are a response to the rising market demand for new TCF layers (transparent conductive film). For many years ITO (indium-tin oxide) has been a standard and it was sufficient for the majority of applications. But now ITO is no longer adequate. Our transparent conductive layer having advantageous characteristics in relation to ITO (higher transparency, lower electrical resistance, higher flexibility).
Moreover XTPL based on the broadly available resources characterized by lower price volatility relative to indium or lower impact of this volatility on the total cost of the layer. Our preliminary plan assume sale of XTPL printers with a license (licensing) to LCD & PV cells' market leaders. In terms of market saturation of competing technologies, the competitive analysis indicates that the market of alternative to ITO conductive layers is currently at an early stage of development and the level of market saturation is low, which gives scope for the implementation of the outcome of the project.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectrical engineeringelectric energy
- engineering and technologynanotechnology
- natural scienceschemical sciencesinorganic chemistrypost-transition metals
- engineering and technologymaterials engineeringcoating and films
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energyphotovoltaic
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
- H2020-EU.2.1.2. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies Main Programme
- H2020-EU.2.1.5. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing
- H2020-EU.2.1.3. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced materials
- H2020-EU.2.3.1. - Mainstreaming SME support, especially through a dedicated instrument
Call for proposal
(opens in new window) H2020-SMEInst-2016-2017
See other projects for this callSub call
H2020-SMEINST-1-2016-2017
Funding Scheme
SME-1 - SME instrument phase 1Coordinator
54 066 Wroclaw
Poland
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.