Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

MetaMaterials antenna for ultra-high field MRI

Project description

Customisable MRI technology

High-field MRI operates at high magnetic field strengths offering improved image resolution, enhanced signal-to-noise ratio and faster image acquisition. However, technical challenges limit its widespread use. The EU-funded M-CUBE project aims to overcome limitations associated with spatial and temporal resolution. Researchers will develop innovative metamaterials not available in nature to improve high field MRI antenna technology. This will offer physicians a simple and affordable solution for tailoring electromagnetic waves according to patient needs. The envisioned outcome will be a patient-centred approach that enables earlier disease detection and more accurate personalised medicine.

Objective

M-Cube aims at changing the paradigm of High-Field MRI and Ultra High-Field antennas to offer a much better insight on the human body and enable earlier detection of diseases. Our main objective is to go beyond the limits of MRI clinical imaging and radically improve spatial and temporal resolutions. The clinical use of High-field MRI scanners is drastically limited due to the lack of homogeneity and to the Specific Absorption Rate (SAR) of the Radio Frequency (RF) fields associated with the magnetic resonance.
The major way to tackle and solve these problems consists in increasing the number of active RF antennas, leading to complex and expensive solutions. M-Cube solution relies on innovative systems based upon passive metamaterial structures to avoid multiple active elements. These systems are expected to make High-Field MRI fully diagnostically relevant for physicians.
To achieve these expectations, M-Cube consortium will develop a disruptive metamaterial antenna technology. This we will able us to tackle both the lack of homogeneity and SAR barriers. Metamaterials are composite structured manmade materials designed to produce effective properties unavailable in nature (e.g. negative optical index). They allow us to tailor electromagnetic waves at will. Thus, the scientifically ambitious idea is to develop antennas based on this unique ability for whole body coil. This technological breakthrough will be validated by preclinical and clinical tests with healthy volunteers. M-Cube gathers an interdisciplinary consortium composed of academic leaders in the field, eight universities, and two promising SMEs. Physicists, medical doctors and industrial actors will work closely all along the implementation of the project to guarantee the success this novel approach, a “patient-centered” solution which will pave the way for a more accurate diagnosis in the context of personalized medicine and will enable to detect a disease much earlier that is currently possible.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-FETOPEN-2016-2017

See all projects funded under this call

Coordinator

UNIVERSITE D'AIX MARSEILLE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 230 023,75
Address
BOULEVARD CHARLES LIVON 58 LE PHARO
13284 Marseille
France

See on map

Region
Provence-Alpes-Côte d’Azur Provence-Alpes-Côte d’Azur Bouches-du-Rhône
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 230 023,75

Participants (10)

My booklet 0 0