Objective
Universality is a central concept in several branches of mathematics and physics. In the broad context of statistical mechanics and condensed matter, it refers to the independence of certain key observables from the microscopic details of the system. Remarkable examples of this phenomenon are: the universality of the scaling theory at a second order phase transition, at a quantum critical point, or in a phase with broken continuous symmetry; the quantization of the conductivity in interacting or disordered quantum many-body systems; the equivalence between bulk and edge transport coefficients. Notwithstanding the striking evidence for the validity of the universality hypothesis in these and many other settings, a fundamental understanding of these phenomena is still lacking, particularly in the case of interacting systems.
This project will investigate several key problems, representative of different instances of universality. It will develop along three inter-connected research lines: scaling limits in Ising and dimer models, quantum transport in interacting Fermi systems, continuous symmetry breaking in spin systems and in models for pattern formation or nematic order. Progresses on these problems will come from an effective combination of the complementary techniques that are currently used in the mathematical theory of universality, such as: constructive renormalization group, reflection positivity, functional inequalities, discrete harmonic analysis, rigidity estimates. We will pay particular attention to the study of some poorly understood aspects of the theory, such as the role of boundary corrections, the loss of translational invariance in multiscale analysis, and the phenomenon of continuous non-abelian symmetry breaking. The final goal of the project is the development of new tools for the mathematical analysis of strongly interacting systems. Its impact will be an improved fundamental understanding of universality phenomena in condensed matter.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences mathematics pure mathematics mathematical analysis
- natural sciences physical sciences classical mechanics statistical mechanics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00154 ROMA
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.