Objective
Wearable technology is redefining the boundaries of our own body. Wearable robotic (WR) fingers and arms are robots, designed to free up or complement our hand actions, to enhance humans’ abilities. While tremendous resources are being dedicated to the development of this groundbreaking technology, little notice is given to how the human brain might support it. The intuitive, though unfounded, view is that technology will fuse with our bodies, allowing our brains to seamlessly control it (i.e. embodied technology). This implies that our brain will share resources, originally devoted to controlling our body, to operate WRs. Here I will elucidate the conditions necessary for technological embodiment, using prosthetic limbs as a model. I will build upon knowledge gained from rehabilitation, experimental psychology and neuroscience to characterise and extend the boundaries of body representation towards successful adoption of WRs. I will combine behavioural, physiological and neuroimaging tools to address five key questions that are currently obscuring the vision of embodied technology: What conditions are necessary for a person to experience an artificial limb as part of their body? Would the resources recruited to control an artificial limb be shared, or rather conflict, with human body representation? Will the successful incorporation of WRs disorganise representations of the human limbs? Can new sensory experiences (touch) be intuitively inferred from WRs? Can the adult brain support the increased motor and cognitive demands associated with successful WRs usage? I will first focus on populations with congenital and acquired hand loss, who differ in brain resources due to plasticity, but experience similar daily-life challenges. I will then test body representation in able-bodied people while learning to use WR fingers and arm. Together, my research will provide the first foundation for guiding how to successfully incorporate technology into our body representation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences neurobiology
- natural sciences computer and information sciences internet internet of things
- medical and health sciences clinical medicine physiotherapy
- social sciences psychology
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
WC1E 6BT LONDON
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.