Skip to main content
European Commission logo print header

Functional extreme nonlinear nanomaterials

Objetivo

Metasurfaces that mimic artificial order in matter have recently opened an exciting gateway to reach unprecedented properties and functionality for the modification of light propagation. The artificial “atoms” and “molecules” of the metasurface can be tailored in shape and size, the lattice constant and inter-atomic interaction can be precisely tuned. Furthermore, using symmetry and polarization state properties topological Berry phase effects can greatly enhance the functionality of such surfaces.
This project sets to explore the revolutionary physics of nonlinear optical Berry phase metasurfaces, covering nonlinear optical frequency generation and wave dispersion engineering as well as real-time reconfiguration of nonlinear optical properties. Novel unique nonlinear optical properties of metasurfaces that arise from their specific topological configurations open up exciting new venues for device development in the fields of all-optical data processing, optical meta-nanocircuits, phase conjugating perfect mirrors, and background-free nonlinear holography. The project will investigate the possibilities of strongly enhanced nonlinear light-matter interaction and novel nonlinear optical processes that are based on nonlinear topological Berry phase effects coupled to inter- and intersubband transitions of novel 2D materials. Single layers of transition metal dichalcogenides will allow reconfigurable nonlinear optical properties by changing the valley band transitions.
The proposal covers the development of innovative large scale fabrication technologies, fundamental investigations of the origin and the design of effective nonlinearities, experimental characterizations, as well as device development. The findings of the project based on highly nonlinear reconfigurable metasurfaces based on symmetry and topological effects will impact interdisciplinary research fields including condensed matter physics, optoelectronics and biophotonics.

Régimen de financiación

ERC-COG - Consolidator Grant

Institución de acogida

UNIVERSITAET PADERBORN
Aportación neta de la UEn
€ 1 915 000,00
Dirección
WARBURGER STRASSE 100
33098 Paderborn
Alemania

Ver en el mapa

Región
Nordrhein-Westfalen Detmold Paderborn
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 915 000,00

Beneficiarios (1)