Objective
Development of renewable energy resources that can address energy and environmental issues is currently the top global challenge. Reverse Electrodialysis (RED) is a highly innovative technology for conversion of salinity gradient energy into electricity. Water electrolysis is a promising option for hydrogen production from renewable energy resources. Recently, a novel approach combining RED and Alkaline Polymer Electrolyte Water Electrolysis (APEWE) was reported for sustainable hydrogen production. However, this process achieved low efficiency: RED suffers from the negative impact of multivalent ions on power generation, whereas APEWE lacks highly conducive and stable membrane separators and polymer binders. The MARVEL project aims to i) endow monovalent ion selectivity for RED membranes to reduce the influence of multivalent ions ii) develop novel, fully characterized membrane separators and polymer binders for APEWE iii) test RED-APEWE process with these new materials iv) perform a techno-economic assessment for commercial feasibility. The ultimate goal of MARVEL is to broaden the knowledge and expertise of the researcher, Dr. Ramato Ashu Tufa, through high-quality research training in the emergig area of renewable energy involving multidisciplinary investigation approaches and intersectoral secondments. This allows him to establish a long-standing relationship with his institute and increase his professional network across Europe. An effective dissemination of project results and knowledge will be implemented through presentations of results in major conference, seminars, publications in high-impact peer reviewed journals, project web page, open days etc. Profound outputs from MARVEL will significantly contrubte towards establishment of a strong scientific and technical base for European science and technology, foster the competitiveness and growth of EU economy with a positive impact on the major objectives of energy policy for sustainability and security.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology materials engineering composites
- natural sciences chemical sciences catalysis electrocatalysis
- engineering and technology chemical engineering separation technologies desalination electrodialysis
- natural sciences chemical sciences polymer sciences
- engineering and technology environmental engineering energy and fuels renewable energy hydrogen energy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
166 28 Praha
Czechia
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.