Skip to main content
European Commission logo print header

Resilient steel frame against fire and seismic hazards

Cel

Conventional seismic-resistant structures are designed to experience significant damage under moderate-to strong earthquakes and this results in socio-economic losses such as injuries, high repair costs and disruption of the building use or occupation. To address this issue, researchers have developed modern seismic-resilient frames that can avoid inelastic deformations (i.e. damage) in structural members. Fire is another type of loading, which can cause significant damage and collapse. Moreover, fire after strong earthquakes is also a highly probable catastrophic event as it has been seen after recent earthquakes (e.g. Indonesia 2009, Chile 2010). Despite the fact that the risk of fires is high after strong earthquakes, seismic resilient structural systems have not yet been studied against fire and fire after earthquake loading. This project will assess the behaviour of modern seismic-resilient self-centering post-tensioned steel frames against fire loading and will propose modifications of their structural details so that, apart from seismic resilience, fire robustness can be also achieved. The project aims to develop, for the first time, an innovative steel frame characterized by the unique combination of minimal damage seismic behaviour and robustness against fire and post-earthquake fire loading.

System finansowania

MSCA-IF-EF-ST - Standard EF

Koordynator

UNIVERSITY OF SOUTHAMPTON
Wkład UE netto
€ 183 454,80
Adres
Highfield
SO17 1BJ Southampton
Zjednoczone Królestwo

Zobacz na mapie

Region
South East (England) Hampshire and Isle of Wight Southampton
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity
€ 183 454,80