Objective
There will be around 35 million private or non-industrial use robots in the world by 2018, a market of 19 billion euros. However, autonomous robot technology in Europe is not yet ready to lead this high expectancy due to the lack of robust functionality in uncertain environments. Particularly, safe interaction is an essential requirement. A basic skill, still unachieved, is to allow the robot to be aware of its own body and perceive other agents. Recent evidence suggests that self/other distinction will be a major breakthrough for improving interaction and might be the connection between low-level sensorimotor abilities and conceptual interpretation.
Advanced sensorimotor learning combined with new multimodal sensing devices, such as artificial skin, makes now possible that the robot acquires its perceptual representation, and I hypothesize that learning the multisensory-motor spatiotemporal contingencies permits self/other distinction. Hence, the aim of the project is to provide a hierarchical probabilistic model for self/other distinction in robots, learning the sensorimotor contingencies during interaction. This model not only provides a holistic solution for building the perceptual schema and improves interaction under uncertainty but it might also give insights about how humans construct their own perceptual representation and the sense of agency. Finally, the model will be tested in a whole body sensing humanoid and validated in a service robot in collaboration with a robotics SME. I will use an interdisciplinary approach that combines probabilistic and information sciences modelling with cognitive psychology, creating a highly attractive career profile.
SELFCEPTION will boost the materialization of the next generation of perceptive robots: multisensory machines able to build their perceptual body schema and distinguish their actions from other entities. We already have robots that navigate and now it is the time to develop robots that interact.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences neurobiology
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics autonomous robots
- social sciences psychology cognitive psychology
- natural sciences mathematics applied mathematics mathematical model
- natural sciences computer and information sciences artificial intelligence computational intelligence
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80333 Muenchen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.