Skip to main content
European Commission logo print header

Acoustics for Next Generation Sequencing

Obiettivo

Since completion of the first human genome sequence, the demand for cheaper and faster sequencing methods has increased enormously. This need has driven the development of second-generation sequencing methods, or next-generation sequencing (also known as NGS or high throughput sequencing). The creation of these platforms has made sequencing accessible to more laboratories, rapidly increasing the volume of research, including clinical diagnostics and its use in directing treatment (precision medicine). The applications of NGS are also allowing rapid advances in clinically related fields such as public health and epidemiology. Such developments illustrate why sequencing is now the fastest-growing area in genomics (+23% p.a.). The activity is said to be worth $2.5B this year, and poised to reach ~$9B by 2020. In any workflow, prior to the sequencing reactions, a number of pre-sequencing steps are required, including the fragmentation of the DNA into smaller sizes for processing, size selection, library preparation and target enrichment. This proposal is specifically concerned with this latter area, namely DNA fragmentation – now widely acknowledged across the industry as being the most important technological bottleneck in the pre-sequencing workflow. Our new method for DNA fragmentation – involving using surface acoustic waves will enable sample preparation from lower sample volumes using lower powers. It also has the potential to allow the seamless integration of fragmentation into sequencing instrumentation, opening up the possibility of “sample to answer” diagnostics. In the near term this will enable the implementation of sample preparation pre-sequencing steps within the NGS instruments. In the longer term, our techniques will also enable us to develop methods for field-based DNA sequencing – as may be required for determining “microbial resistance” and informing the treatment of infectious disease in the face of the emergence of drug resistance.

Meccanismo di finanziamento

ERC-POC - Proof of Concept Grant

Istituzione ospitante

UNIVERSITY OF GLASGOW
Contribution nette de l'UE
€ 149 995,00
Indirizzo
UNIVERSITY AVENUE
G12 8QQ Glasgow
Regno Unito

Mostra sulla mappa

Regione
Scotland West Central Scotland Glasgow City
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 149 995,00

Beneficiari (1)