Objective
Photovoltaic (PV) module reliability is a critical factor for energy yield predictability, and reduced PV cost of electricity. Today, there is limited understanding of PV reliability issues under real-field conditions; and none of the state-of-the-art energy yield models can predict their long-term performance considering lifecycle degradation and failure propagation. Ultimate objective of the planned research is to develop the first bottom-up reliability model for selected PV failure/degradation modes, coupled with advanced simulation of real-field stress factors. Broader vision of the Project is to yield a novel design-for-reliability (DfR) protocol for site-specific optimization of PV module concepts. Following a “closed-loop learning” approach, the Project will be implemented in three workpackages (WP). In WP1, analysis of field diagnostic and meteorological data will be performed for selected PV installations and climatic zones, aiming to correlate degradation rates and/or failure occurrences, with site-specific stress factors. WP2 will involve the fabrication of PV samples; which, will undergo novel reliability tests based on insights from WP1, and enable the development of a novel physics/chemical PV reliability models that can be adapted to specific sites and module designs. Then, advanced simulations of PV lifecycle degradation, based on the reliability models coupled to bottom-up energy yield modelling will be developed in WP3. Final results of the project will be a predictive reliability tool and site-specific PV design and qualification guidelines. The project brings together the know-how of the Host, in advanced energy yield modelling and PV module technology innovation and characterization, and the applicant’s experience in PV field diagnostics and reliability; thus, giving a multidisciplinary training by research to the applicant in industrial research environment at an independent research center.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology environmental engineering energy and fuels renewable energy solar energy
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic zones
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3001 Leuven
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.