Objective
This project addresses a frontier of modern quantum physics, entanglement in strongly correlated many-particle systems. At present, despite its importance for fundamental phenomena and potential applications, many-body entanglement is poorly understood theoretically and eludes experimental investigations. Three fundamental challenges are blocking further progress: there are infinitely many classes of many-body entangled states, the calculation of real-time quantum dynamics is inherently difficult, and the quantification of many-particle entanglement remains a hard experimental challenge.
StrEnQTh adopts a radically novel approach to force a breakthrough in each of these challenges, concentrating on specific targets motivated by next-generation AMO setups. 1. By designing a dedicated quantum resource theory, I will establish a novel framework for topological long-range entanglement. 2. By implementing crucial improvements on a tensor-network method, thermalization dynamics in gauge theories becomes tractable, especially hydrodynamization after heavy-ion collisions. 3. By exploiting the untapped potentials of time-reversing quantum dynamics and measuring high-order correlations, mixed-state entanglement becomes accessible. Further, by introducing a new paradigm of detection by dissipation, unequal-time correlators become available as a novel toolset for witnessing many-body entanglement.
To achieve these goals, StrEnQTh builds on (i) my expertise at the interface of quantum optics and information with quantum many-body theory; (ii) previous works and preliminary results that minimize risks; (iii) fruitful synergies between the goals; (iv) a high versatility of the developed methods.
The impact of this project will reach far beyond its immediate field. It will elucidate fundamental theoretical questions of relevance to strongly correlated matter at large, and it will deliver a new generation of detection tools that can find application in other platforms.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences optics
- natural sciences physical sciences quantum physics quantum optics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
38122 Trento
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.