Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS

Melt Transportation in the Earth's Crust: An Experimental and Numerical Evaluation of Natural Materials

Project description

Understanding melt transfer in the Earth’s crust

Earth’s continental crust contains natural resources and energy sources. Exercising fundamental control on its structure and heterogeneity are the formation, migration and emplacement of entirely or partially molten rocks. As many essential elements are concentrated in the upper crust, the required chemical differentiation and measured geochemical signatures should derive from the melting of lower crustal and mantle environments. However, understanding of the transport and accumulation of such melts remains limited. The EU-funded MeltTransport project will explore natural examples of melt migration and accumulation by applying an innovative combination of multidisciplinary techniques and pioneering analytical facilities to deliver new knowledge on this fundamental process.

Objective

The Earth’s continental crust is compositionally layered, hosts natural resources and energy sources sustaining our civilization and represents an important record of the Earth through geological time. A fundamental control on the structure and heterogeneity of the Earth’s continental crust is the formation, migration and emplacement of fully and/or partially molten rocks. The upper crust is richer in silica than in the lower crust and these rocks is where many of the elements that are essential for life are concentrated. The required chemical differentiation and measured geochemical signatures suggests they must be sourced from melting of lower crustal and mantle environments. This requires melt transfer through the lower and middle crust. However, compared to the generation of melts, the transport and accumulation of such melts is still poorly documented and understood. The movement of melts in the crust is responsible for mineral resource formation, hazards (e.g. earthquakes, volcanic eruptions) and is a fundamental enabler of plate tectonics – a feature that is unique to Earth.
The ‘MeltTransport’ project will interrogate natural examples of melt migration and accumulation using an innovative combination of multidisciplinary techniques and state-of-the-art analytical facilities, including a one-of-a-kind experimental apparatus, to provide new insights into this fundamental process. This project will investigate melting processes through three main methods: (1) quantitative microstructural and chemical characterisation, (2) physical experimentation and (3) numerical modelling. This combination of methods will permit visualisation and quantification of (i) how the interaction between melts and the host rock (melt–rock) varies with different pressure/temperature/deformation scenarios, (ii) the formation of microstructures and features during melt extraction/migration/emplacement, and (iii) geochemical characteristics associated with particular microstructures.

Coordinator

UNIVERSITY OF LEEDS
Net EU contribution
€ 212 933,76
Address
WOODHOUSE LANE
LS2 9JT Leeds
United Kingdom

See on map

Region
Yorkshire and the Humber West Yorkshire Leeds
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 212 933,76