Skip to main content
European Commission logo print header

Aerodynamic shape optimization for minimum transient growth in compressible flow

Objectif

Industrial, economical and environmental interests are at stake in the research efforts concerning the optimisation of the shape of aircraft wings so to obtain low aerodynamic drag. For a computational method to be reliable as a design process, it must be based on a mathematical model, which provides an appropriate representation of the significant features of the flow, such as shock waves, boundary layers and laminar-to-turbulent transition. The total drag of an aircraft wing is mainly given by the sum of pressure or wave drag, related to the existence of shock waves, and viscous drag, whose magnitude depends on whether the flow on the wing is laminar or turbulent. Turbulent flow produces a much larger drag; thus important research efforts have been devoted to keeping the flow laminar over the largest possible portion of the wing surface, which when accomplished, translates directly to less pollution and reduced expenses. Two main objectives characterize this project. The first is to increase the fundamental understanding of spatial transient growth as a scenario for laminar/turbulent transition. Within the scope of this objective, the existing theory will be extended to account for three-dimensional, compressible, boundary-layer flow on either flat plates (in the fundamental studies) or curved surfaces (for the case of realistic applications). The second objective is to incorporate the newly developed model of spatial transient growth as a transition prediction method in shape optimisation in order to enable the design of slender bodies with low drag. Here, gradient based optimisation will be used and the gradients will be efficiently evaluated, despite the large number of degrees of freedom, using the adjoin of the governing equations. The efficiency is in particular important when aiming for industrial applications and increased European competitiveness.

Appel à propositions

FP6-2002-MOBILITY-5
Voir d’autres projets de cet appel

Coordinateur

UNIVERSITA DEGLI STUDI DI SALERNO
Contribution de l’UE
Aucune donnée
Adresse
Via Ponte Don Melillo 1
FISCIANO
Italie

Voir sur la carte

Coût total
Aucune donnée