Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Molecular resolution with focused visible light

Objective

We intend toppling one of the most prominent paradigms in science: the diffraction resolution limit of an imaging or writing system relying on focused light. To achieve this goal we will pursue a radically new concept. We argue that effecting a reversible saturable transition with a focal intensity distribution featuring one or more local zeros should allow imaging and writing at the molecular scale. Compared to reported efforts (from our own group), the imaging and the writing shall be performed at 1000 to 1,000,000 times lower power. Unlike the established electron beam and scanning probe approaches, our technique accesses the sample's depth. Thus it will allow the non-invasive 3D-visualization of live cells and the writing of nanostructures in 3D. Imaging live cells on a macromolecular scale (<10 nm) would revolutionize our understanding of cellular function and disease. Verification of our concept will profoundly impact the field imaging and may even challenge the current multibillion efforts in nanolithography to translate optical technology into the problematical deep-UV and X-ray regime. Our endeavour does not fall into the thematic priorities of FP6. It is risky but footed on quantitative predictions. Requiring joint efforts of chemists, biologists, and physicists alike, a broadly based breaking of the diffraction barrier is a truly interdisciplinary task. Conversely, light-based nanoscopy would reflect back on these disciplines as well as on their commercial exploitation. Our success will enhance the capabilities of key industrial areas, as diverse as the biomedical industry and information technology. The project's ambition is to establish optical nanoscopy in the same way, as the scanning probe microscopes were established in the 1980's. Breaking the diffraction barrier of focusing optical systems is one of the most challenging yet realistic goals in science to date, with great potential reward.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2003-NEST-A
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

STREP - Specific Targeted Research Project

Coordinator

MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (4)

My booklet 0 0