Objective
The modern Boreal summer corresponds to Antarctic winter season and vice versa, while their summer and winter are separated by 6 months due to anti-phase bipolar seesaw in the solar insolation. Similarly, Boreal (65oN) and Austral (65oS) summer insolations suggest an anti-phase relationship, implying warmer Arctic corresponding to cooler Antarctic in the geological past. Sea surface temperature (SST) estimates for the 18000 years BP last glacial maximum (LGM) are suggested to be underestimated by recent studies. Artificial neural networks (ANN) are a branch of artificial intelligence, computer systems that have the ability to learn in a way similar to the mammalian brain. ANN-based SST estimates have been found to be far better than standard methods in paleo climate research. The IIF candidate has generated radiolarian ANN with lower errors in estimates than previously used methods. Therefore, it is envisaged that radiolarian ANN will be used to estimate the paleo-SSTs and salinities for the last 150,000 years BP using high resolution data (2-3 k) from sediment cores from the Arctic and Antarctic Oceans with emphasis on comparison between the Holocene, LGM and Emian interglacial during the tenure of the IIF fellowship under supervision of Prof. Malmgren at Goteborg University, Sweden.
We expect that thermal changes in the world ocean at 18K BP reported by CLIMAP would be quite different, which would have a wider implications on boundary conditions used in general circulation models currently used. Radiolarian ANN-based paleo-SSTs and salinities are envisaged to reveal more realistic thermohaline changes in the subtropical and sub-polar regions in both hemispheres, at the strategically located gateway of the thermohaline conveyor belt, which transports tropical h eat to the north Atlantic resulting in warmer winters in the northern Europe than the scenario projected by shutting down of the conveyor belt due abrupt climatic changes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences earth and related environmental sciences palaeontology paleoclimatology
- natural sciences computer and information sciences artificial intelligence computational intelligence
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP6-2002-MOBILITY-7
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
IIF - Marie Curie actions-Incoming International Fellowships
Coordinator
PANAJI
India
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.