Objective
SLIPPRY combines two very exciting topics in contemporary photonics research - slow light and photonic crystals - with the goal of designing compact and efficient slow light structures for all-optical data processing applications.
Slow light will be the key to a new generation of all-optical processing devices including optical delay lines and buffers as well as ultra-compact, low power switches and modulators.
To be of practical use, these devices must be broadband, and therefore require precise dispersion control in order to process high data rates and short pulses without signal degradation. Photonic crystals are thus the ideal platform for slow light structures, as they exhibit strong and highly adjustable dispersion behaviour as well as being able to operate over a wide bandwidth.
One of the major shortcomings of this promising field is the lack of mature designs; while an ad hoc slow light design has recently been demonstrated in a photonic crystal modulator [Vlasov et al. Nature 438, pp.65-68 Nov 200 5], there is much to do in terms of bandwidth, suppression of higher order dispersion terms and tunability of the slowdown factor.
SLIPPRY aims to address these issues through the following objectives,
- comparative analysis of slow-light mechanisms in photonic crystals;
- design and optimization of novel slow light structures;
- optimization of an injector for broadband coupling to slow light modes;
- design of active slow light devices in photonic crystals.
We will achieve these objectives with the implementation of a numerical design and optimization program running in parallel with a world-class experimental research program.
The design approach will incorporate semi-analytic methods, two- and three- dimensional numerical simulations and state-of-the-art numerical optimization tools. Refinement of designs will be undertaken in close collaboration with experimentalists to ensure designs are feasible and optimized for experimental conditions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering signal processing
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications telecommunications networks optical networks
- natural sciences chemical sciences inorganic chemistry metalloids
- natural sciences computer and information sciences data science data processing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP6-2005-MOBILITY-7
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
IIF - Marie Curie actions-Incoming International Fellowships
Coordinator
KY16 9AJ ST ANDREWS
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.