Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Genetic and epigenetic consequences of hybridization and polyploidy in Dactylorhiza (Orchidaceae)

Objective

Hybridization and polyploidization are now recognized as major phenomena in the evolution of plants, promoting genetic diversity, adaptive radiation and speciation. New findings suggest that the interactions of the combined genomes in allopolyploids induce waves of genetic and epigenetic alterations that have the potential to result in novel expression patterns and new phenotypes.

Such novelties, in combination with heterosis and gene redundancy, might confer on hybrids an elevated evolutionary potential. Hybridization has the potential to occur repeatedly between different populations of the same parental taxa, leading to arrays of allopolyploids that subsequently interbreed.

This is the case also in the Dactylorhiza incarnata/maculata complex, e.g. for the allotetraploid pair D. traunsteineri and D. majalis s.s. which both resulted from hybridization of D. fuchsii and D. incarnata.

To further our understanding on the consequences of hybridization and genome duplication on polyploid genome natural evolution and adaptation to the environment, I propose here the use of this allotetraploid pair with similar genetic background, but difference in their evolutionary history and ecology: D. traunsteineri is a recently formed, morphologically variable hybrid with a narrower distribution and D. majalis s.s. has a wider distribution and is much more uniform morphologically.

A cDNA amplified fragment length polymorphism (AFLP) genome-wide survey of the transcriptome, together with a methylation sensitive AFLP approach is expected to indicate the functional relevance of correlations between gene expression and the development of a phenotype, the direction and stochastic nature of the diploidization process, and the molecular mechanisms that result in adaptation to different habitats and therefore in reproductive isolation.

The methods proposed are among the most modern and advanced strategies to provide inferences on the principle of genomic responses to allopolyploidization.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2005-MOBILITY-5
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

EIF - Marie Curie actions-Intra-European Fellowships

Coordinator

ROYAL BOTANIC GARDENS, KEW
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0