Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Outer membrane protein complexes of mycobacteria

Objective

Tuberculosis is a severe human disease and the appearance of a growing number of multiple-drug resistant Mycobacterium tuberculosis strains makes it a necessity to learn more about cell wall formation, drug uptake and drug mechanisms. A major hurdle for the development and improvement of newug candidates is the notorious difficulty in identification and characterization of the corresponding drug targets in M. tuberculosis. This limitation results mainly from the fact that we do not yet have the means to study protein function and protein-protein interactions within the mycobacterium itself. We therefore propose to develop a novel approach to study protein-protein interactions in living mycobacteria which addresses this important need. The approach is based on a recently developed fusion tag that can be labelled with a variety of chemically diverse compounds in living cells. The labelling of a protein of interest in living mycobacteria with a reactive oxygen species-generating photosensitizer and the subsequent proteome-wide detection of protein modifications by reactive oxygen species should allow the identification of proteins that are localized in the direct vicinity of the labelled protein of interest. The application of this technique to proteins associated with the outer membrane of mycobacteria should allows us to identify and characterize new mycobacterial outer membrane proteins and protein complexes, thereby yielding new insights into the biochemical features of the highly complex and unusual structure of the mycobacterial cell wall. Only the discovery of new mycobacteria-specific drug targets will lead to the development of new drugs for a better treatment of tuberculosis. In addition, this new technology should be applicable to the identification of protein-protein interactions in a variety of different host organisms and it has therefore the potential to become a general tool in functional proteomics.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2005-MOBILITY-5
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

EIF - Marie Curie actions-Intra-European Fellowships

Coordinator

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
EU contribution
No data
Address
Institut des sciences et ingenierie chimiques BCH - LIP
LAUSANNE
Switzerland

See on map

Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0