Objective
The bulk of radiation of a star originates from the photosphere, its visible surface. The temperature surprisingly increases outwards through the stellar atmosphere until, in case of the Sun, million of degrees are reached in the corona. While it has been shown that the required heating in the corona is due to magnetic fields, it is yet not clear for the layer in between, the so-called chromosphere.
The chromosphere is hard to observe and difficult to model so that, despite large progress during the last de cades, the thermal structure of stellar chromospheres, including the one of the Sun, and the related heating processes are still poorly understood and controversially debated. The heating, that is attained by pure mechanical heating via shock waves and/or processes connected to magnetic fields, must provide sufficient energy to counterbalance the radiative emission derived from observations of chromospheric diagnostics like the spectral lines of calcium and magnesium. This emission varies strongly between different stars, suggesting a different coverage with magnetic fields, but is always larger than the so-called basal flux. Recent simulations and also high-resolution observations suggest that the layer is highly structured and very dynamic. A time-dependent and spatially resolved numerical simulation is thus mandatory for a realistic description.
The project proposed here aims at the development and implementation of new methods to realistically describe the energy balance of stellar chromospheres, including simple model atoms for the most important agents calcium and magnesium and the resulting coupling between radiation field and chromospheric gas. The final goal is a set of three-dimensional self-consistent magnetohydrodynamics simulations with realistic chromospheric radiative transfer. Detailed comparisons with observations will be the ultimate key to the understanding of structure and heating of the chromosphere of the Sun and other stars.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering satellite technology
- natural sciences chemical sciences inorganic chemistry alkaline earth metals
- natural sciences physical sciences astronomy galactic astronomy solar physics
- natural sciences physical sciences astronomy galactic astronomy solar astronomy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP6-2005-MOBILITY-5
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
OSLO
Norway
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.