Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Water Electrolysis at Elevated Temperatures

Objective

Hydrogen has the potential to provide a reliable, secure, and clean source of power. The barrier is the challenge of getting hydrogen economically to the point of use. Water electrolyser offers a practical way of hydrogen production in association with renewable energy sources. Compared to the conventional alkaline electrolyte electrolyser, the polymer electrolyte membrane (PEM) electrolyser can operate at high current densities and pressure with compact design. The main challenges for PEM electrolysers are high capital cost of key materials, components and the overall system as well as insufficient long-term durability. The strategic development of the WELTEMP project is an elevated operating temperature of the PEM electrolyser. In this way the energy efficiency will be significantly improved because of the decreased thermodynamic energy requirement, enhanced electrode kinetics, and the possible integration of the heat recovery. Key issues to achieve this strategic target are breakthroughs of fundamental materials developments, including catalysts, membranes, current collectors, bipolar plates, and other construction materials. The WELTEMP will start with developing active and stable anodic catalysts based on mixed metal oxides, temperature-resistant PEM based on composite PFSA, sulfonated aromatic and/or acid-base cross-linked polymers, and highly conducting and corrosion-resistant tantalum thin surface coatings as current collectors and bipolar plates. Based on these materials, a 1 kW prototype electrolyser will be constructed for demonstration and evaluation. It is aimed to reach operational temperature above 120C and a hydrogen production of 320 NL/h at 80% efficiency (LHV basis) at system level. These innovative developments need trans-national efforts from European industries and R&D groups. The expertise and know-how of the consortium in the field of refractory metals, electrocatalysts, polymers and membranes, MEA fabrication, and most importantly the construction and operation of water electrolysers, will ensure a success of the proposed project.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ENERGY-2007-1-RTD
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

DANMARKS TEKNISKE UNIVERSITET
EU contribution
€ 577 129,00
Address
ANKER ENGELUNDS VEJ 101
2800 Kongens Lyngby
Denmark

See on map

Region
Danmark Hovedstaden Københavns omegn
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (7)

My booklet 0 0