Project description
New Paradigms and Experimental Facilities
OPNEX delivers a first principles approach to the design of architectures and protocols for multi-hop wireless networks. Systems and optimization theory is used as the foundation for algorithms that provably achieve full transport capacity of wireless systems. Subsequently a plan for converting the algorithms termed in abstract network models to protocols and architectures in practical wireless systems is given. Finally a validation methodology through experimental protocol evaluation in real network test-beds is proposed.
OPNEX will use recent advances in system theoretic network control, including the back-pressure principle, max-weight scheduling, utility optimization congestion control and primal-dual method for extracting network algorithms. These approaches exhibited already vast potential for achieving maximum capacity and full exploitation of resources in abstract network models and found their way to reality in high performance switching architectures and recent variants of TCP that embody the primal-dual optimization principle.
Wireless, the fastest growing component of internet today, is also the least understood for the designer due to mobility, rapidly changing topology, radio link unpredictability and volatile load distribution among others. Current approaches used in practice for multi-hop wireless, the basic communication infrastructure for sensor network extensions of the internet, are mostly empirical and heuristic. Our system optimization approach will provide a rigorous integrated system design framework from physical up to network and transport layer that renders itself to validation and comparison with the theoretically optimal performance in terms of throughput, spectrum and energy utilization. The adopted approach on decentralization, communication and computational complexity reduction as well as autonomous operation will lead to implementable algorithms and architectures to be validated eventually in the proposed test-beds.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences internet transport layer
- natural sciences mathematics pure mathematics topology
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors smart sensors
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications radio technology
- natural sciences computer and information sciences artificial intelligence heuristic programming
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-ICT-2007-2
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
57 001 THERMI THESSALONIKI
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.