Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Effect of structure upon the reactivity of catalytic nanoparticles

Objective

Heterogeneous catalysis is an area where nanotechnology is present in people's everyday lives. Catalytic processes are found in diverse applications such as fuel-refining, the petrochemical industry, fertiliser production, automotive catalytic converters, biochemistry etc. They also provide a pathway to renewable, clean energy in the form of hydrogen fuel cell technology. Most modern catalysts take the form of catalytically active nanoparticles dispersed over some highly porous support medium. It is expected that the activity of these particles is largely determined by the density of catalytically active sites on the particle surface. The proposed research will establish a new methodology in nanocatalyst research by using high-resolution experimental techniques to establish a close and unambiguous correlation between the morphology and reactivity of individual nanoparticles. The principal tools will be scanning tunneling microscopy (STM), which offers atomic-scale structural resolution, combined with scanning Auger microscopy (SAM), offering nanometer-scale chemical information. These techniques will be used to measure the surface structure and composition of catalytic nanoparticles before, after and perhaps even during a reaction and to correlate this data with the reactivity of the nanoparticles measured by temperature programmed desorption (TPD). By measuring the surface structure of individual nanoparticles it will then be possible to make a direct comparison with the results of computational modeling. This will open the possibility to optimize the nanoparticle size and shape in order to maximize the number of catalytically active surface sites, while minimizing the unused volume, thereby improving the efficiency of the catalyst while reducing the material cost.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-2-1-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

DANMARKS TEKNISKE UNIVERSITET
EU contribution
€ 290 980,62
Address
ANKER ENGELUNDS VEJ 101
2800 Kongens Lyngby
Denmark

See on map

Region
Danmark Hovedstaden Københavns omegn
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0