Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Single-Molecule studies of photo-conductance on photosynthetic molecular systems by SPM break-junction measurements

Objective

This proposal presents a new fundamental approach to study one of the most outstanding processes in nature at the single-molecule level; the photo-induced charge separation process on molecular photosynthetic systems. The last technical advances, especially on Scanning Probe Microscopies (SPM), have allowed approaching a number of relevant molecular processes to a single-molecule level, fact that has brought a revolutionary view to the field of Molecular Biology and a more quantitative comprehension of fundamental bio-molecular processes. Indeed, examples of single-molecule experiments like folding/unfolding of proteins, DNA-enzymes interactions or molecular conductance measurements have become today a reality. In the last, electrical conductance measurements through a variety of simple molecular architectures have been already performed, and relevant fundamental roles such as the presence of different chemical entities; double bounds and/or chemical electron-acceptors/donors in the conduction mechanism, have been already understood. Being immersed in such an excitingmolecu scenario, we have now the opportunity to go one step further and tackle into the analysis of more complex molecular conductance processes at the single-molecule level. Conductance taking place between specific molecular centers at the primary electron transfer step in Photosynthesis is undoubtedly the most important molecular conductance mechanism in life. We have now all required elements at hand to put such a project in practice; technical instrumentation to measure single-molecule conductance under physiological conditions as well as synthetic routes to design the mimetic molecular connections among the photo-conducting pigment and the corresponding secondary electron-acceptor cofactor to approach the problem. Beyond the valuable scientific contribution, the results of this project will span to the desired implementation of such molecular systems on the current photo-electrical cell technology

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-4-1-IOF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IOF - International Outgoing Fellowships (IOF)

Coordinator

FUNDACIO INSTITUT DE BIOENGINYERIA DE CATALUNYA
EU contribution
€ 225 715,46
Address
CARRER BALDIRI REIXAC PLANTA 2A 10-12
08028 Barcelona
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0