Objective
Multiferroics (i.e. materials where ferroelectricity and magnetism coexist) are presently drawing enormous interests, due to their technologically-relevant multifunctional character and to the astoundingly rich playground for fundamental condensed-matter physics they constitute. Here, we put forward several concepts on how to break inversion symmetry and achieve sizable ferroelectricity in collinear magnets; our approach is corroborated via first-principles calculations as tools to quantitatively estimate relevant ferroelectric and magnetic properties as well as to reveal ab-initio the main mechanisms behind the dipolar and magnetic orders. In closer detail, we focus on the interplay between ferroelectricity and electronic degrees of freedom in magnets, i.e. on those cases where spin- or orbital- or charge-ordering can be the driving force for a spontaneous polarization to develop. Antiferromagnetism will be considered as a primary mechanism for lifting inversion symmetry; however, the effects of charge disproportionation and orbital ordering will also be studied by examining a wide class of materials, including ortho-manganites with E-type spin-arrangement, non-E-type antiferromagnets, nickelates, etc. Finally, as an example of materials-design accessible to our ab-initio approach, we use “chemistry” to break inversion symmetry by artificially constructing an oxide superlattice and propose a way to switch, via an electric field, from antiferromagnetism to ferrimagnetism. To our knowledge, the link between electronic degrees of freedom and ferroelectricity in collinear magnets is an almost totally unexplored field by ab-initio methods; indeed, its clear understanding and optimization would lead to a scientific breakthrough in the multiferroics area. Technologically, it would pave the way to materials design of magnetic ferroelectrics with properties persisting above room temperature and, therefore, to a novel generation of electrically-controlled spintronic devices
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2007-StG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
00185 Roma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.