Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Thermal and compositional state of the Earth's inner core from seismic free oscillations

Objective

The core, comprising the innermost parts of the Earth, is one of the most dynamic regions of our planet. The inner core is solid, surrounded by a liquid iron alloy. Inner core solidification combined with motions in the fluid outer core drive the geodynamo which generates Earth's magnetic field. Solidification of the inner core also supplies some of the heat that drives mantle convection and subsequently plate tectonics at the surface of the Earth. The thermal and compositional structure of the inner core is thus key to understanding the inner workings of our planet. No direct samples can be taken of the core and our knowledge of the thermal and compositional state of the Earth's outer and inner core relies on seismology. Ray theoretical studies using short period body waves are the most commonly used seismological data; these have led to observations of a large range of anomalous structures in the Earth's inner core, including anistropy, layers and hemispherical variations. However, due to uneven station and earthquake distribution, the robustness and global distribution of these features is still controversial. Long period seismic free oscillations, on the other hand, are able to provide global constraints, but lack of appropriate theory has prevented more complicated structures from being studied using normal modes. Thus, many fundamental questions regarding the thermal history of the core and geodynamo remain unanswered. Here, I propose to develop a comprehensive seismic inner core model, employing fully-coupled normal mode theory for the first time and using data from large earthquakes such as the Sumatra-Andaman event of 26 December 2006. This will dramatically change our current ideas of structure in the inner core. Using a novel combination of fluid dynamics and mineral physics I will interpret the thermal and compositional structure found at the centre of our planet, which in turn are fundamental to understand its geodynamo and magnetic field.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2007-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
EU contribution
€ 1 202 744,00
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN Cambridge
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0