Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Quality control of gene expression: mechanisms for recognition and elimination of nonsense mRNA

Objective

Analogous to quality control checks along the assembly line in industrial manufacturing processes, cells possess multiple quality control systems that ensure accurate expression of the genetic information throughout the intricate chain of biochemical reactions. “Nonsense-mediated mRNA decay” (NMD) represents a quality control mechanism that recognizes and degrades mRNAs of which the protein coding sequence is truncated by the presence of a premature termination codon (PTC). By eliminating these defective mRNAs with crippled protein-coding capacity, NMD substantially reduces the synthesis of potentially deleterious truncated proteins. Given that 30 % of all known disease-causing mutations in humans lead to the production of a nonsense mRNA, NMD serves as an important modulator of the clinical manifestations of genetic diseases, and manipulating NMD therefore represents a promising strategy for future therapies of many genetic disorders. However, the underlying molecular mechanisms of NMD are currently not well understood. One goal of our research is to understand at the molecular level how PTCs are recognized and distinguished from correct termination codons and how this recognition of nonsense mRNAs subsequently triggers their rapid degradation. In addition to triggering NMD, we have recently discovered that PTCs in certain immunoglobulin genes can also lead to the transcriptional silencing of the corresponding gene. We now search for the biological relevance of this novel quality control mechanism termed “nonsense-mediated transcriptional gene silencing” (NMTGS) and want to identify the involved molecules and their interactions. Using mainly mammalian cell cultures, we study the effect on the expression of engineered NMD and NMTGS reporter genes upon various treatments of the cells. State-of-the-art biochemical and molecular biology techniques are employed with the goal to further our understanding of these processes and their regulation at the molecular level.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2007-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

UNIVERSITAET BERN
EU contribution
€ 1 300 000,00
Address
HOCHSCHULSTRASSE 6
3012 Bern
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Espace Mittelland Bern / Berne
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0