Objective
Macroscopic control of quantum states is a major theme in much of modern physics because quantum coherence enables study of fundamental physics and has promising applications for quantum information processing. The potential significance of quantum computing is recognized well beyond the physics community. For electron spins in GaAs quantum dots, it has become clear that decoherence caused by interactions with the nuclear spins is a major challenge. We propose to investigate and reduce hyperfine induced decoherence with two complementary approaches: nuclear spin state narrowing and nuclear spin polarization. We propose a new projective state narrowing technique: a large, Coulomb blockaded dot measures the qubit nuclear ensemble, resulting in enhanced spin coherence times. Further, mediated by an interacting 2D electron gas via hyperfine interaction, a low temperature nuclear ferromagnetic spin state was predicted, which we propose to investigate using a quantum point contact as a nuclear polarization detector. Estimates indicate that the nuclear ferromagnetic transition occurs in the sub-Millikelvin range, well below already hard to reach temperatures around 10 mK. However, the exciting combination of interacting electron and nuclear spin physics as well as applications in spin qubits give ample incentive to strive for sub-Millikelvin temperatures in nanostructures. We propose to build a novel type of nuclear demagnetization refrigerator aiming to reach electron temperatures of 0.1 mK in semiconductor nanostructures. This interdisciplinary project combines Microkelvin and nanophysics, going well beyond the status quo. It is a challenging project that could be the beginning of a new era of coherent spin physics with unprecedented quantum control. This project requires a several year commitment and a team of two graduate students plus one postdoctoral fellow.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences electromagnetism and electronics semiconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2007-StG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
4051 Basel
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.