Objective
Deficiency of natural energy resources on Earth makes advanced energy management a challenge. Efforts are taken to harness cheap, inexhaustible, eco-friendly renewable sources of energy. Among these, thermoelectric (TE) conversion is a promising principle. Best materials for TE application are non-conventional heavily doped semiconductors. In particular, high temperature stable silicides (higher manganese silicides = HMS, CrSi2 and others) represent suitable candidates for demanded TE applications operable at high temperature. A main aim of TE materials development is to improve the figure of merit ZT, which essentially depends on the energy band structure and scattering of carriers and phonons in the material. It is planned to investigate qualitatively the transport behaviour of HMS compacted from nano-sized powders, to optimize its properties by chemical synthesis, and to reach a reduction of the thermal conductivity in nano-crystalline material. Starting from the synthesis of nano-powders by melting and ball milling, forming of a nano-structure with suitable scaling will be optimized by a rapid hot pressing technology. CrSi2 and other high temperature silicides will be optimized in a similar way for high electrical and thermal conductivity. They shall be applied as contacting materials and interlayers, ending up to advanced materials and technology procedures for high temperature thermogenerators. Materials will be characterized by XRD, SEAD (structure), TEM, SEM (morphology), EDAX (analysis). Having achieved the targeted nano-structure, the TE properties will be measured in dependence on temperature for optimising the application-relevant material parameters. The performance of thermogenerator devices based on the new solutions will be tested by unique measuring techniques of the host. The fellow will deepen his knowledge and experience on TE materials and thermogenerator technology for high temperature and is expected to develop superior contacting methods.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2007-4-2-IIF
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
51147 KOLN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.