Objective
Unrepaired DNA breaks can lead to genomic instability or cell death. They occur frequently during normal cellular metabolism and are caused, for example, by the collapse or stalling of the replication fork in response to DNA damage. Proper DNA-end processing and handling are essential for the survival of the cell and prevention of carcinogenesis. Cells possess robust mechanisms to repair DNA breaks. One such DNA repair mechanism is homologous recombination where the sister chromatid is used as a template for the faithful repair of the DNA break. In Bacteria, this pathway is initiated when a DNA end is processed to a 3-ssDNA overhang terminated at a recombination hotspot (Chi) sequence. This is a substrate for formation of a RecA nucleoprotein filament that catalyses strand exchange to promote repair. Recent data implicate the AddAB helicase-nuclease and the SMC (Structural Maintenance of Chromosomes) complex in the DNA break processing mechanism of the model organism Bacillus subtilis. Interaction between these machines provides a molecular link between DNA dynamics and the initiation of DNA break processing that may co-ordinate replication fork collapse and DNA repair. Single-molecule manipulation and imaging techniques offer huge potential to investigate DNA break repair reactions in completely new ways, providing information that is inaccessible to conventional ensemble experiments. The aim of this project is two-fold: firstly, to develop novel biophysical instruments for fast Atomic Force Microscopy imaging in liquid and a combined Optical and Magnetic Tweezers setup; and secondly, to monitor and characterize the real-time dynamics of these DNA-repair processes using these new and complementary biophysical approaches. Single-molecule investigation will be supported by statistical analysis of the data and conventional bulk biochemical techniques.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences microbiology bacteriology
- natural sciences biological sciences genetics DNA
- natural sciences physical sciences optics microscopy
- natural sciences biological sciences genetics chromosomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2007-StG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
28006 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.