Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

The geometry of topological quantum field theories

Objective

The predictive power of quantum field theory (QFT) is a perpetual driving force in geometry. Examples include the invention of Frobenius manifolds, mixed twistor structures, primitive forms, and harmonic bundles, up to the discovery of the McKay correspondence, mirror symmetry, and Gromov-Witten invariants. Still seemingly disparate, in fact these all are related to topological (T) QFT and thereby to the work by Cecotti, Vafa et al of more than 20 years ago. The broad aim of the proposed research is to pull the strands together which have evolved from TQFT, by implementing insights from mathematics and physics. The goal is a unified, conclusive picture of the geometry of TQFTs. Solving the fundamental questions on the underlying common structure will open new horizons for all disciplines built on TQFT. Hertling’s “TERP” structures, formally unifying the geometric ingredients, will be key. The work plan is textured into four independent strands which gain full power from their intricate interrelations. (1) To implement TQFT, a construction by Hitchin will be generalised to perform geometric quantisation for spaces with TERP structure. Quasi-classical limits and conformal blocks will be studied as well as TERP structures in the Barannikov-Kontsevich construction of Frobenius manifolds. (2) Relating to singularity theory, a complete picture is aspired, including matrix factorisation and allowing singularities of functions on complete intersections. A main new ingredient are QFT results by Martinec and Moore. (3) Incorporating D-branes, spaces of stability conditions in triangulated categories will be equipped with TERP structures. To use geometric quantisation is a novel approach which should solve the expected convergence issues. (4) For Borcherds automorphic forms and GKM algebras their as yet cryptic relation to “generalised indices” shall be demystified: In a geometric quantisation of TERP structures, generalised theta functions should appear naturally.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2007-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
EU contribution
€ 417 420,00
Address
FAHNENBERGPLATZ
79098 Freiburg
Germany

See on map

Region
Baden-Württemberg Freiburg Freiburg im Breisgau, Stadtkreis
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0