Objective
“Equipped with his five senses, man explores the universe around him and calls the adventure science” E.P. Hubble It is amazing how much we have learned about the working of our universe by using our five senses and how little we still know about the working of these senses themselves! Even though the molecular mechanism of sight, taste, and smell is known, we still don’t know how the mechanical sensations of touch and hearing function at the molecular level. Mechanosensitive (MS) ion channels, present in membranes, are the molecules that sense membrane tension in all species ranging from bacteria to man. They stay functional even in artificial membranes, indicating that mechanosensation occurs at the protein-lipid interface. In an effort to understand the mechanism of force sensation, the major limitation has been the inability to ‘observe’ the molecular changes occurring in MS channels from the onset of the force. The aim of this proposal is to understand how channel proteins sense mechanical force at the molecular level. A bacterial channel, MscL, will be used as a model for its natural function to couple tension in the membrane to protein conformational changes. Here, on the basis of my recent findings, I propose to build on synthetic biology approaches to develop unique tools to specifically address the MS channel, allowing controlling its activity extrinsically and reversibly. In combination with the spectroscopic techniques, I want to elucidate the mechanism of mechanosensation in MscL by measuring structural changes in the protein and its interaction with the surrounding lipids, starting from the onset of the force. The research will clarify not only the long-standing question of how MscL senses tension, but it will also shed light on the common property of mechanosensitivity among nature’s sensors in higher organisms; transient receptor-potential (TRP) channels, which are involved in hearing, touching and other sensory actions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences microbiology bacteriology
- natural sciences biological sciences synthetic biology
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences biological sciences biochemistry biomolecules lipids
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2007-StG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
9712CP Groningen
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.