Objective
The long-term goal of our research is to advance the state-of-the-art in molecular simulation algorithms by 4-5 orders of magnitude, particularly in the context of the GROMACS software we are developing. This is an immense challenge, but with huge potential rewards: it will be an amazing virtual microscope for basic chemistry, polymer and material science research; it could help us understand the molecular basis of diseases such as Creutzfeldt-Jacob, and it would enable rational design rather than random screening for future drugs. To realize it, we will focus on four critical topics: • ALGORITHMS FOR SIMULATION ON GRAPHICS AND OTHER STREAMING PROCESSORS: Graphics cards and the test Intel 80-core chip are not only the most powerful processors available, but this type of streaming architectures will power many supercomputers in 3-5 years, and it is thus critical that we design new “streamable” MD algorithms. • MULTISCALE MODELING: We will develop virtual-site-based methods to bridge atomic and mesoscopic dynamics, QM/MM, and mixed explicit/implicit solvent models with water layers around macromolecules. • MULTI-LEVEL PARALLEL & DISTRIBUTED SIMULATION: Distributed computing provides virtually infinite computer power, but has been limited to small systems. We will address this by combining SMP parallelization and Markov State Models that partition phase space into transition/local dynamics to enable distributed simulation of arbitrary systems. • EFFICIENT FREE ENERGY CALCULATIONS: We will design algorithms for multi-conformational parallel sampling, implement Bennett Acceptance Ratios in Gromacs, correction terms for PME lattice sums, and combine standard force fields with polarization/multipoles, e.g. Amoeba. We have a very strong track record of converting methodological advances into applications, and the results will have impact on a wide range of fields from biomolecules and polymer science through material simulations and nanotechnology.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences software
- natural sciences biological sciences biochemistry biomolecules
- natural sciences chemical sciences polymer sciences
- natural sciences physical sciences optics microscopy
- natural sciences computer and information sciences computational science multiphysics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2007-StG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
100 44 STOCKHOLM
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.