Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Multiscale mathematical modelling of dynamics of structure formation in cell systems

Objective

The aim of this transdisciplinary project is to develop and analyse multiscale mathematical models of pattern formation in multicellular systems controlled by the dynamics of intracellular signalling pathways and cell-to-cell communication and to develop new mathematical methods for the modelling of such complex processes. This aim will be achieved through a close collaboration with experimental groups and comprehensive analytical investigations of the mathematical problems arising in the modelling of these biological processes. The mathematical methods and techniques to be employed will be the analysis of systems of partial differential equations, asymptotic analysis, as well as methods of dynamical systems. These techniques will be used to formulate the models and to study the spatio-temporal behaviour of solutions, especially stability and dependence on characteristic scales, geometry, initial data and key parameters. Advanced numerical methods will be applied to simulate the models. This comprehensive methodology goes beyond the state-of-the-art, since usually the analyses are limited to a single aspect of model behaviour. Groundbreaking impacts envisioned are threefold: (i) The project will contribute to the understanding of mechanisms of structure formation in the developmental process, in the context of recently discovered signalling pathways. In addition, some of the factors and mechanisms playing a role in developmental processes, such as Wnt signalling, are implicated in carcinogenesis, for instance colon and lung cancer. (ii) Accurate quantitative and predictive mathematical models of cell proliferation and differentiation are important for the control of tumour growth and tissue egeneration; (iii) Qualitative analysis of multiscale mathematical models of biological phenomena generates challenging mathematical problems and, therefore, the project will lead to the development of new mathematical theories and tools.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2007-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
EU contribution
€ 750 000,00
Address
SEMINARSTRASSE 2
69117 Heidelberg
Germany

See on map

Region
Baden-Württemberg Karlsruhe Heidelberg, Stadtkreis
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0