Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Joining ecophysiological Understanding and global ecosystem modelling for improved simulation of Land surface Interactions with the Atmosphere

Objective

A thorough understanding of feedbacks between the terrestrial biosphere and the climate system is pivotal for any climate change mitigation strategy. Such feedbacks could significantly affect and potentially accelerate climate change. Terrestrial biosphere models are increasingly coupled interactively to ocean and atmosphere models with the goal to quantify these feedbacks. However, state-of-the-art terrestrial biosphere models fall short of the current understanding of important ecophysiological controls of land surface processes, as evidenced by the increasing amount of ecosystem observations that have become available recently. This project aims at bridging the gap between observational science and large scale biosphere modelling by developing representations of relevant ecophysiological processes at a level of detail suitable for an Earth system model. Two of the most important fields that urgently need to be better represented will be addressed, namely the biological control of canopy conductance and plant-soil interactions. Both substantially influence land surface fluxes, ecosystem productivity and long-term carbon sequestration. The project will use innovative techniques to develop novel process representations of canopy conductance by combining different types of ecosystem observations such as eddy-covariance based flux observations and plant trait data collected by the IGBP fast track initiative on plant functional types. Novel representations of soil organic matter dynamics, including a substrate control, and plant nutrient uptake pathways will be developed and evaluated based on recent laboratory and ecosystem manipulation experiments. The improved model will be used to revise predictions of state-of-the-art terrestrial biosphere models for present-day and future conditions. The project will thus provide a tool to better quantify potential future interactions of the terrestrial biosphere and the climate system for the use in coupled Earth system models.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-2-2-ERG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-ERG - European Re-integration Grants (ERG)

Coordinator

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
EU contribution
€ 45 000,00
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0