Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Development and laboratory testing of improved action and Matrix hydro turbines designed by advanced analysis and optimization tools

Objective

The overall concept of the proposed project is to improve the hydraulic efficiency of small action type turbines, through the development and application of a numerical optimization methodology, that will be validated by the construction and laboratory testing of the prototype models of Pelton, Turgo and Matrix turbines representing both action and reaction types. The methodology to be developed regards the adaptation and application of the Lagrangian Smoothed Particle Hydrodynamics model for the simulation of the flow. The application of the innovative design tool is expected to achieve an average increase in small action and Matrix hydro turbines efficiency of the order of 3 to 5%. The flow analysis software to be implemented is characterised as cost effective and capable of fast processing of multi-parametric flows, whereas the optimization strategy will be based on Evolutionary Algorithms, resulting in enhanced economic feasibility of the proposed design procedure. The investigation of three different types of small hydro turbines will demonstrate the wide application range of the new methodology and evaluate its generality. The S&T objectives of the project are: Adaptation and application of the Lagrangian Smoothed Particle Hydrodynamics model for the simulation of the flow in the action turbines to be investigated; Finding the most efficient geometry parameterization method for each of the three turbine types; Development of a multilevel optimization method based on the Evolutionary Algorithms System software; Specification, selection and set-up of the hardware and software computational platform; Finding the optimal design of the runner and other components for the three turbine types considered by applying the developed methodology; Prototype turbine models manufacturing according to the results of the design optimization procedure; Evaluation of the new design tools after thorough experimental analysis of the prototype turbine models.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ENERGY-2007-1-RTD
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

ETHNICON METSOVION POLYTECHNION
EU contribution
€ 574 900,40
Address
HEROON POLYTECHNIOU 9 ZOGRAPHOU CAMPUS
157 72 ATHINA
Greece

See on map

Region
Αττική Aττική Κεντρικός Τομέας Αθηνών
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (7)

My booklet 0 0