Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Bio-Inspired Self-assembled Nano-Enabled Surfaces

Objective

Advanced nanofabrication can produce now nano-structures similar in size with single biomolecules or their self-assembled architectures. Capitalising on this strategic opportunity, BISNES focuses on the design, fabrication and implementation of biomimetic nanostructures which complement biomolecular surfaces and modulate the biomolecular activity. The BISNES project will (i) develop software products for the representation and quantification of bimolecular surfaces, especially those that self-assemble in long-range nano-aggregates, interacting with artificial nanostructures; (ii) design and fabricate nanostructured surfaces and objects that complementary replicate biomolecular surfaces; and (iii) design, fabricate and implement novel hybrid bio-devices which exhibit quantum-leap increase in capabilities (e.g. sensitivity, response time, cost) or entirely new ones. The project will deliver demonstrated technical solutions with impact on a wide range of applications and products: ultra-sensitive bio-diagnostics and drug discovery devices; inherently bactericidal surfaces, medical devices for the in vitro study of amyloid and cytoskeleton proteins central to critical disease (e.g. neurodegenerative diseases, cancer); and hybrid nanodevices that exhibit new electromagnetic properties useful for future IT devices. The research consortium has the critical mass of knowledge and experimental capabilities, as well as the right combination of activities (academia and industry, both SMEs and industry end-user), which allows us to follow the complete innovation path from fundamental science to its implementation in demonstration devices. BISNES’ cross-disciplinary approach of will synergise the European first-class position in nanofabrication and biomolecular engineering, through cross-field applications and will contribute to the consolidation of the high added-value of European biomedical, advanced manufacturing and IT industry.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-NMP-2007-SMALL-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

THE UNIVERSITY OF LIVERPOOL
EU contribution
€ 764 827,76
Address
BROWNLOW HILL 765 FOUNDATION BUILDING
L69 7ZX LIVERPOOL
United Kingdom

See on map

Region
North West (England) Merseyside Liverpool
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (8)

My booklet 0 0