Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Superior Energy and Power Density Li-Ion Microbatteries

Objective

"On-board microbattery power is fast becoming essential in many of today’s emerging technologies. Down-scaling in the micro-electronic industry has far outpaced advances in small-scale electrical power supplies. The absence of on-board power is a hinder to advances in many critical areas: micro-electronic devices and biomedical micro-machines. However, nano-materials and -structures provide new resources to attack the problem. MEMS devices will change our lives completely - given micropower sources. These include microsensor arrays, micro-vehicles, identification cards, memory backup, and biomedical micro-machines (pacemakers, defibrillators, neural stimulators, drug delivery systems). Insufficient power from 2D-MB configurations inspires this search for a 3D-MB using cheap and light micro-/nano-fabrication materials. We also probe whether related techniques can improve the performance of conventional Li-ion batteries. Can multicomponent assembly be replaced by a single interpenetrating nano-architectured anode/cathode element separated by an electrolyte? This would greatly cheapen conventional rechargeable Li-ion batteries for typically EV/HEV applications. Our major objectives are: • Synthesis and fabrication of novel nano-architectured battery materials and MB components. • Implementation in fully integrated thin-film 3D-MBs with current and power densities per unit footprint area of 70-100 μAh and 150-200 μW for 50-100 reversible cycles. • Implementation of at least some of these 3D-MB concepts in conventional normal-scale Li-ion battery fabrication. • ""Proof-of-concept"" by showing that some 3D-MB device from the project can power both a MEMS and a medical device. The project thus establishes 3D nano-architectures, micro-/nano-fabrication approaches, and the enabling Science for a whole new generation of microbatteries."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-NMP-2007-SMALL-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

UPPSALA UNIVERSITET
EU contribution
€ 506 044,00
Address
VON KRAEMERS ALLE 4
751 05 Uppsala
Sweden

See on map

Region
Östra Sverige Östra Mellansverige Uppsala län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (8)

My booklet 0 0