Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Coherent ultrafast spectroscopy and manipulation of excitonic Q-bits

Objective

The research field of the proposed subject is the coherent, ultrafast spectroscopy and manipulation of individual excitonic state confined within a semiconductor quantum dot. Due to technological advances in light detectors and microscopy techniques, the investigation of the emission properties of individual, localized light emitters is now routinely possible. These investigations have led to significantly improved insight into the electronic dynamics of these systems and their temporal instabilities due to the environment. The observation of coherence in these systems and the manipulation by coherent control is, however, still at an early stage. On the other hand, the latter techniques are a prerequisite for the use of optical transitions in single quantum dots as qubits in quantum information processing. Recently a novel optical detection scheme, heterodyne-detected spectrally resolved four-wave mixing (FWM) has been developed. It has the advantage of a multi-channel detection of all spectral FWM components simultaneously, a shot-noise limited sensitivity, and a retrieval of amplitude and phase of the FWM signal. These properties are achieved even in the presence of a strong background from the optical excitation pulses. Having this technique at hand, the coherent control and the implementation of all-optical quantum gates can be approached. The demonstration of quantum computational operations using individual quantum systems in solid state is the next step towards the realization of a solid state quantum computer. The project will include an advanced training of the fellow in the heterodyne-detected FWM technique. This technique will be applied to investigate and manipulate coherence properties not only of quantum dots, but also of quantum dot molecules and quantum dots embedded in a pillar microcavity.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-2-1-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

CARDIFF UNIVERSITY
EU contribution
€ 178 874,06
Address
RESEARCH SERVICES C/O MAIN BUILDING
CF10 3AT CARDIFF
United Kingdom

See on map

Region
Wales East Wales Cardiff and Vale of Glamorgan
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0