Objective
The use of variational principles to distinguish geometric objects is a fundamental theme of modern differential geometry: geodesics, minimal surfaces, Willmore surfaces, Einstein metrics, Yang-Mills fields. More generally, harmonic mappings have been introduced by Eells and Sampson and harmonic section theory applies this variational problem to sections of submersions. Especially interesting are bundles with homogeneous fibre G/H, where H is the reduced structure group corresponding to some additional geometric structure, since sections then parametrize H-structures. The theme of this project is to explore harmonic sections of geometric structures and adapt the powerful analytical technique of geometric flows. For example, the harmonic section equations are satisfied for nearly cosymplectic structures, if the characteristic field is parallel, or a hypersurface in a Kähler manifold. The general case has yet to be decided. One question is whether nearly Sasakian (or CR or warped product) structures are parametrized by harmonic sections. The 1-1 correspondence between f-structures (a generalisation of almost complex and contact structures) and sections of a homogeneous bundle leads to looking for f-structures for which the section is harmonic. The homogeneous fibre is neither irreducible nor symmetric, making the geometric analysis more intricate. The starting point of the theory of harmonic maps was the associated flow which inspired Hamilton's work on the Ricci flow, culminating with Perelman's proof of the Poincaré Conjecture. The variational nature of harmonic geometric structures naturally leads to considering the associated flow. This represents ground-breaking research as geometric flows have only been used for maps and curvatures. Viewing geometric structures as maps enables to extend this powerful tool to very geometrical objects.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Topic(s)
Call for proposal
FP7-PEOPLE-2007-2-1-IEF
See other projects for this call
Funding Scheme
MC-IEF - Intra-European Fellowships (IEF)Coordinator
29200 BREST
France