Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Space coding in hippocampo-entorhinal neuronal assemblies

Objective

Despite impressive advances in almost every field of neuroscience, our insights into brain function remain largely confined to its building blocks at the microscopic level, and to phenomenological descriptions at the macroscopic level. Understanding how complex mental functions originate from electrical and chemical processes in brain cells requires a comprehensive and integrated multi-level analysis focused on neuronal assemblies and microcircuits, where myriads of intricately connected neurons with different properties act together. We shall use the coordinator’s recent discovery of entorhinal grid cells – a key cell type in the network for spatial representation and navigation – as a model for neuronal computation in non-sensory cortical microcircuits. The crystal-like structure of the firing fields of grid cells provides an entirely new route to access the neuronal interactions responsible for pattern formation in the brain. Using a forceful combination of computational modelling and novel electrophysiological, optical and molecular research tools never applied for circuit analyses in the brain before, we shall establish the mechanisms by which microcircuits in the hippocampus and entorhinal cortex encode, maintain and update representations of location as animals move from one place to another. Insights into the underlying computations have considerable translation potential. Understanding the algorithms for spatial navigation may change the way we manage a number of diseases, including Alzheimer’s disease, which commonly begins in the entorhinal cortex and has topographical disorientation as one of its most reliable symptoms, and it may provide European industry with radically innovative concepts for the design of artificial navigating agents.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-HEALTH-2007-A
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
EU contribution
€ 954 750,00
Address
HOGSKOLERINGEN 1
7491 Trondheim
Norway

See on map

Region
Norge Trøndelag Trøndelag
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (6)

My booklet 0 0