Objective
Based on our developments of Spin-Polarized Scanning Tunnelling Microscopy (SP-STM) and Magnetic Exchange Force Microscopy (MExFM), both offering spin sensitivity and spatial resolution down to the ultimate limit of single atoms, we will study spin-dependent interactions between individual magnetic atoms on metal surfaces, in diluted magnetic semiconductors, on surfaces of magnetic insulators, as well as between single-atom tips and ultracold quantum gases. Besides the investigation of static spin states and spin interactions, we will manipulate spin states in a controlled manner down to the single atom limit by making use of the spin-transfer torque exerted by spin-currents from an atomically sharp SP-STM tip across a vacuum barrier. Moreover, we will combine spin-current induced magnetization switching experiments on magnetic metallic nanostructures based on SP-STM with pump-probe experiments, thereby studying the fundamentals of magnetization reversal processes both spatially and time-resolved. We will make use of the powerful combination of SP-STM with single-atom manipulation to probe spin-dependent interactions in artificial nanostructures. In the case of magnetic insulators we will probe spin states and spin-dependent interactions based on local measurements of the quantum-mechanical exchange and correlation forces between a single-atom tip with a well-defined spin state and single atoms of the sample. Spin excitations at the level of individual atoms will be probed by a combination of SP-STM with inelastic electron tunnelling spectroscopy, while the combination of MExFM with measurements of the damping of the cantilever oscillation will be employed to reveal local spin excitations in electrically insulating materials. Finally, we will couple an MExFM-type force sensor to the spin state of an optically trapped ultracold quantum gas with the challenging goal to combine scanning probe and quantum optical methods for manipulating quantum states of matter.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences optics microscopy
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences physical sciences condensed matter physics quantum gases
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2008-AdG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
20148 HAMBURG
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.